a2 United States Patent

Whetsel

US009483330B2

(10) Patent No.:
45) Date of Patent:

US 9,483,330 B2
*Nov. 1, 2016

(54)

(71)

(72)

")

@
(22)

(65)

(63)

(60)

(1)

(52)

TRUSTED CLIENT-CENTRIC APPLICATION
ARCHITECTURE

Applicant: Robert C. Whetsel, Frederick, MD

(US)

Inventor: Reobert C. Whetsel, Frederick, MD
(US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 14/738,361

Filed: Jun. 12, 2015

Prior Publication Data
US 2015/0355954 Al Dec. 10, 2015
Related U.S. Application Data

Continuation of application No. 13/058,782, filed as
application No. PCT/US2009/053573 on Aug. 12,
2009, now Pat. No. 9,069,626.

Provisional application No. 61/088,209, filed on Aug.
12, 2008.

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
5,999,937 A 12/1999 Ellard
6,208,345 Bl 3/2001 Sheard et al.
2003/0140058 Al 7/2003 Martin et al.
2004/0015366 Al 1/2004 Wiseman et al.

2007/0220063 Al
2008/0222192 Al

9/2007
9/2008

O’Farrell et al.
Hughes

OTHER PUBLICATIONS

International Search Report for WO 2010/019683, issued by KIPO,
Feb. 24, 2010.

Primary Examiner — Bai D. Vu
(74) Attorney, Agent, or Firm — Mannava & Kang, P.C.

(57) ABSTRACT

Trusted Client-Centric Application Architecture (TCZA?)
provides the ability to securely exchange data between
applications. TC?A® may be used to perform functions
requiring data exchange between applications that typically
may not be able to communicate with each other. TCZA?
uses a universal data set to exchange data. Application data
from a source application is converted to a universal data set,
and then converted to application data for one or more target
applications. Application data is then propagated to respec-
tive native applications. TC>A® provides the ability to
update, modify, and manipulate data for a plurality of
applications using a single user interface.

19 Claims, 11 Drawing Sheets

Int. C1.
GO6F 17/30 (2006.01)
GO6F 9/54 (2006.01)
UsS. CL
CPC ... GO6F 9/541 (2013.01); GO6F 17/30569

(2013.01)

100
106 Normalized

Universal
Controiler
Module
(Uc)

104

Universal Data

Universal interface Modute

; Connection Pool:

108

102

Application
Container

Application 1

Normalized
Application
Container
s (!
Normalized
Application
Container

Application 3

Normalized
Application
Container

Application N

US 9,483,330 B2

Sheet 1 of 11

Nov. 1, 2016

U.S. Patent

4 OId

N uoyeslddy

. SINPOW
isuiguog 801
uoneouddy e

c uoneoyddy @ w.:,,uom co:ow:coom

-

@
€OVN) SiNpop
Jauruon
uoneonddy
POZi|BLUION

ZOVN) 8lnpoyy
Jaurejuogn
uonesiddy
DOZI|BULION

SINPON 20BLI8)U| |BSISAILN
BlB(] |BSISAIUN

Z uoneoyddy

01

(on)
BINPOW
1sjjonuon
[esisAiun

L OVYN) @inpon
Jaureiuon

yoneonddy
POz BULLION

| uonesyddy

901

O
Q
—

US 9,483,330 B2

Sheet 2 of 11

Nov. 1, 2016

U.S. Patent

Z 'Ol
T,},/
j00d .
U uoneolddy LOROBUUOY) | 0Lz 4
J *
ainpoy uswisbeuepy
SUOISSIULIS
Ut 802
.. SINPO
e —— yuswoebeueyy Ajyuap; |
8ic¢ SINPON
3INPO Bleq [eSISAUN poz,~ SIPORP.

7 Ieljonuoy ¢

¢ _sousbhe
s nepert e SSRUISHE
.91z CIMPON, Caimpot e 202
~8inpojy-. 3 oot souabie) |

;oousBijiayul | uonedlddy

[BINPO JBjjcnuoy]
“gseuisng’ Sl

toibo7 uoneoyddy

e

W(DYN) 901

BINPOY Jauiejuos uoneoyddy pezZieuLIop (on)
SINPOYY 18[{0QUDD) [ESIBAIUN

Q
[
™~

US 9,483,330 B2

Sheet 3 of 11

Nov. 1, 2016

U.S. Patent

€ OIld

801
|004 UOHOBULOD

[eaisAyd
Nuit eeQ
3I0M)BN
yodsuei]

uoIsseg
uonesyjddy UOHBIUSSa.d

uoneoiddy H

[oPOIN
80UBJBeY LUONJBULI0DISIU| SWeISAS uadD

(ov)
10108uuo) uopeoyddy

Q)
o)
9p]

US 9,483,330 B2

Sheet 4 of 11

Nov. 1, 2016

U.S. Patent

- yonesddy

Z uogeoyddy

| uoneoijddy

¥ 'Oid

T

(wan)

S|NPO BIB([esIoAIuN

A10)8 ejeg Adetodway

Ble(yoelog

US 9,483,330 B2

Sheet 5 of 11

Nov. 1, 2016

U.S. Patent

¢ o
N-208 201
N-#05 | o
uoneosyddy 13N 18307 (unyampopy S0 o
\ Jsureuo) 00 HORIBUUONT
uoneoyddy)
pPozZi|eulICN R

a-v0s * °
. S 8208
(OVN) einpon
JBuUeIon
uoneonddy
V-#0S
uoneolddy oid Jaqenslid v-208

(OVN) 8inpop
Jsureiucd
uoneoyddy

DZI|BWIO

wiesAg Jendwio) (8007

e1e([BSIOAIUN

(in)
a0BLS)U} [BSIDAIUN

901
aINPo

y01

(on)
dINPOpy
lojjonuon
[eSIoAIUN

o}
w0

US 9,483,330 B2

Sheet 6 of 11

Nov. 1, 2016

U.S. Patent

9914

909

DM
919 HAMS
aoepell| jesioAiun

19
Jauen

0L9
souelddy NdA

[ARY
GOM SPIM PHOM

oseqeied
Jpuwioisny
Aoebay

asudioug
13N

lemasd

WHISAS Y3 1NdW0O I G0N 009

US 9,483,330 B2

Sheet 7 of 11

Nov. 1, 2016

U.S. Patent

4°9id

209 Y09

dy3 esudisiug 1IN . (WD) osegeieuswoisny Aseboan

BOY
Hemadi-

uoneoiddy \

229 Ald AN] \
seeg GOM SPIAL PHOM 00Z

N uopeoyddy sl
fepod

201 ;
sjuswWNoogQ 3600y

lepusien 9|00 | o
e sjboony

A

NOILLVOi1ddV TVLd0d G3iNgidisia 062

US 9,483,330 B2

Sheet 8 of 11

Nov. 1, 2016

U.S. Patent

8 '9OId

908 V1vQad AZINCHHONAS

508 SdIHSNOILY 13 31V3d0

(VLVQ IZITYIWHON)
¥08 NOILVISNYY L Vivd

4

£08 NOILVYDILNIHLINY ¥3sn

“““““““““ NOILVOIddY
c08 HOV3 3ZITVILINI

V.1vd IONVHOX3 OL
109 a33N LYHL SNOILYOITddY

(=)
=)
0l

US 9,483,330 B2

Sheet 9 of 11

Nov. 1, 2016

U.S. Patent

906

406

y06

€06

¢06

106

6 OIld

SNOILVYDITddV
AAILYN JAILDF4S3Y OLNI 1Nd SI vivd

4

148Svivd

343990141 SI NOILVZINOYHONAS

a3aiiddy

IINAOW Y1Va TVSHIAINN IHL NI 138
V.1Va AHVHOdNEL FHL NI g3H01S Vivd

4

JOV443LNI
WVSHIAIND FHL OUINI dFHIINI SIViva

Q
M

US 9,483,330 B2

Sheet 10 of 11

Nov. 1, 2016

U.S. Patent

0L°9Id

H31dvav
MHOMLIN

8101

ZLoL v 0101

s
v 100l

A
v 9001

¥i0L

LINNIOVHOLS TTaVAONIY |

|

o}
(e
[
-—

ALJOWIW

AHOWIN

US 9,483,330 B2

Sheet 11 of 11

Nov. 1, 2016

U.S. Patent

A ILE L P

2 .

Sunfieps RSy wcmuxﬁw

WIRKSLD YRGY BEBIRPY @

LE "OId

A 20
PO HH LA S WL BB SUMN

g gy ftdeg s
2t
Sontots o petpn ok

SR TR

LIRS g

AR

- WG 330;

JrIBCRIE

R

Kigee

TR iR

US 9,483,330 B2

1
TRUSTED CLIENT-CENTRIC APPLICATION
ARCHITECTURE

PRIORITY

The present application is a continuation of co-pending
U.S. patent application Ser. No. 13/058,782, filed Feb. 11,
2011, which claims priority under 35 U.S.C. §371 to PCT
Application PCT/US2009/053573, filed on Aug. 12, 2009,
which claims priority to Provisional Application Ser. No.
61/088,209, filed on Aug. 12, 2008, the disclosures of which
are hereby incorporated by reference in their entireties.

BACKGROUND

Advances in technology over the years have greatly
increased the number of computer software applications
available to meet the needs of computer users. This demand
for the increased number of applications and data manage-
ment have enabled an evolution in computing environments
to extend to modern architectures that we use today. One
example would be distributed computer processing, which
uses “data exchange” to expand computing from a single
machine to multiple machines across computer networks.

Advances in development/evolution of software have not
kept pace with the diverse needs of users. While there are
definite benefits to current software architectures, their com-
plexity and structure can make it difficult to freely and
securely exchange data with each other. A common frustra-
tion is entering data into one application and finding that it
cannot be shared with another application. The amount of
data entered into these applications by users has increased in
complexity, and grown exponentially. This leads to re-
entering of data, copying/pasting, or importing data that
takes a lot of time, can introduce errors, or data corruption
and integrity issues. This lack of communication between
applications has become a major problem given the vast
amount of data that users generate and need to access and
analyze.

Not surprisingly, the evolution of computing environ-
ments continues to be based on more complex computer
architectures. The sheer complexity of the computing envi-
ronments have further hindered interoperability with limited
or no data exchange between applications from different
architectures.

“Data exchange” refers to the taking of data structured
according to a source computer application and transforming
it into data structured according to a target computer appli-
cation. By using “data exchange,” the evolution in comput-
ing environments served to meet even more needs of even
more computer users.

Now a description is provided of different software archi-
tectures and disadvantages of some of the architectures. This
is followed by a discussion of the disadvantages of the
architectures affecting the data exchange between applica-
tions created under the different architectures.

Initially, application developers implemented 1-tier com-
puter applications according to 1-tier architecture by using
the “monolithic” computing model. Each 1-tier application
in its entirety consisted of one software module. Therefore,
each 1-tier application was self-contained, resided on one
machine, and operated independently. Accordingly, users
did not easily exchange data between applications running
on different machines.

Later, application developers implemented 2-tier com-
puter applications according to 2-tier architecture by using
the “client-server” model. Each 2-tier application included

10

15

20

25

30

35

40

45

50

55

60

65

2

two software modules, the “client” and “server.” Each
application could theoretically reside on the same machine.
More typical however, 2-tier applications were distributed
across one or more networks, each client residing on a
different machine from its counter-part server. However,
data exchange in 2-tier applications did not reach beyond the
client-server application nor beyond the machines on which
the application resided. Accordingly, user-benefit from data
exchange was limited.

Even later, application developers implemented multi-tier
applications according to an architecture having three basic
tiers, the “interface-tier,” the “logic-tier” and the “data-tier.”
Typically, the “interface-tier” or upper-tier included a single
software module residing on a client machine; the “logic-
tier” or middle-tier included one or more logic-modules each
residing on a logic-machine; and, the “data-tier” or lower-
tier included one software module residing on a database-
machine. In this, the multi-tier application simultaneously
resided on different machines. Therefore, multi-tier appli-
cations were considered distributed computer processing.
However, data exchange in the multi-tier application did not
reach beyond the multi-tier application nor the machines on
which the multi-tier application resided. Accordingly, user
benefit from data exchange is also limited.

Service-oriented architecture (SOA), a more recent soft-
ware architecture, was designed to facilitate data exchange
between disparate systems. SOA defines and provisions the
IT infrastructure with a system and method to allow different
applications to exchange data and participate in business
processes. SOA uses messaging and generic interfaces to
communicate between dissimilar systems. SOA separates
functions into distinct units (services), which are distribut-
able over networks, combinable and reusable to create
business applications. These services communicate with
each other by passing data from one service to another, or by
coordinating an activity between two or more services. SOA
works well for exchanging data between applications pro-
grammed under a particular SOA, such as a .Net platform.
However, data exchange issues are still present when com-
municating with applications created under a different SOA
platforms.

From an end user’s perspective, these current architec-
tures have constraints, because control of the applications is
still in the vendor’s or developer’s hands. While function-
ality (as in tasks) may be changed to user’s needs to a limited
extent, the coding (which represents true control) is still with
the vendor or developer. Conflicts on agreeing to a universal
standard or universal data structure leads back to the situ-
ation where there are individual standards for each vendor.
Interoperability between applications using the architectures
discussed above still depends on agreement among vendors.
Therefore, end-users are still tied (locked-in) into the appli-
cation choices made by the vendor.

For example, a user may desire to exchange contact or
calendar information between two different customer rela-
tionship management (CRM) applications made by two
different vendors and possibly programmed under two dif-
ferent software architectures. For example, a user may be
using a web-based CRM application, and a personal com-
puter (PC)-based CRM application that may have comple-
menting features. In order to provide data exchange between
the two programs, such as for synchronizing the contact and
calendar information, code would have to be written that
converts contact and calendar data from a data format used
by the web-based CRM to a data format used by the
PC-based CRM and vice versa. If the user has multiple CRM
applications, this specialized code must be provided for each

US 9,483,330 B2

3

pair of applications that need data exchange. This becomes
quite a cumbersome, as well as costly, task. In fact, the
specialized code is usually written by a vendor so that users
would migrate off of a competitor’s platform. Normally code
is not written to keep both applications in use, and vendors’
in general are not open to assisting users if they believe that
the user will be moving their data to another vendor.

End users are not the only ones to experience frustration
because of disparate architectures and lack of interoperabil-
ity between applications created under different architec-
tures; computer system administrators and software appli-
cation developers suffer as well. As a computer systems
become obsolete, or unsupported, and users’ still need
features offered by the legacy application. One technique
used is to export delineated files from the legacy application,
and then import them into the newer one. Normally, data
from legacy systems are exported as a one-way/one-time
event, and lack the ability to exchange data with newer
applications continuously. In addition, importing data into
and exporting data outside a particular product’s suite of
applications using, for example, comma-delineated files can
be inconsistent between different architectures (most likely
due to mixed encoding schemes).

Thus, due to (1) the lack of interoperability between the
non-obsolete already-employed computing power and the
already-available expanded and increased computing power,
(2) the lack of interoperability between applications created
under different software architectures; and (3) the resulting
financial pressure to extend the life-cycle of legacy com-
puter systems and applications and to more fully realize
investments therein, banking, military, government, busi-
ness, and end users are all faced with a choice, of selecting
one application over another. This may result in either
prematurely retiring perfectly usable applications, loss of
convenience, and other disadvantages. This choice will
persist at least until there is interoperability between soft-
ware applications.

BRIEF DESCRIPTION OF DRAWINGS

Features of the present invention will become apparent to
those skilled in the art from the following description with
reference to the figures, in which:

FIG. 1 illustrates a diagram of a Trusted Client-Centric
Application Architecture (TC>A?) configured to perform
various functions described herein, according to an embodi-
ment of the invention;

FIG. 2 illustrates a diagram of the TC?A? configured to
connect a Universal Controller module (UC) and an nth
Normalized Application Container module (NAC) using a
Universal Data Module (UDM) and Connection Pool and
operable to perform various features described herein,
according to an embodiment of the invention;

FIG. 3 illustrates a diagram of a connection pool used to
connect all the modules within the TC2A2, and the TC2A? to
applications, according to an embodiment of the invention;

FIG. 4 illustrates a diagram of the UDM which creates
and maintains relationships for all applications, stores data
for all modules within TC>A?, contains temporary data and
performs various features described herein, according to an
embodiment of the invention;

FIG. 5 illustrates a diagram of the TC?A? configured using
a local computer system, according to an embodiment of the
invention;

FIG. 6 illustrates a system diagram showing that the
TC?A? is operable to facilitate data exchange between enter-

35

40

45

65

4

prise computer systems, mobile computer systems, and other
computer systems, according to an embodiment of the
invention;

FIG. 7 illustrates a system diagram showing that the
TC?A? is operable to facilitate data exchange between a
distributed portal application and other applications, accord-
ing to an embodiment of the invention;

FIG. 8 illustrates a flow diagram of a method for initial-
izing the TC>A?, according to an embodiment of the inven-
tion;

FIG. 9 illustrates a flow diagram of a method for using an
initialized TC*A2, according to an embodiment of the inven-
tion;

FIG. 10 illustrates a block diagram of a computing
apparatus configured to implement or execute the methods
800 and 900 illustrated in FIGS. 8 and 9, according to an
embodiment of the invention; and

FIG. 11 illustrates an example of a screen shot for a
universal interface used by the TC?AZ according to an
embodiment of the invention.

DETAILED DESCRIPTION

For simplicity and illustrative purposes, the principles of
the embodiments of the invention are described by referring
mainly to examples thereof. In the following description,
numerous specific details are set forth in order to provide a
thorough understanding of the embodiments. It will be
apparent however, to one of ordinary skill in the art, that the
embodiments may be practiced without limitation to these
specific details. In some instances, well known methods and
structures may not be described in detail so as not to
unnecessarily obscure the description of the embodiments of
the invention.

Overview of the TC?A*

According to an embodiment, a Trusted Client-Centric
Application Architecture, TC*A? is configured to function as
a universal application translator that allows applications to
freely communicate with each other and exchange data in a
safe and secure manner across domains. In particular, the
TC?A? enables data sharing across multiple applications,
enables data sharing between different users, enables data
sharing across domains, and enables system life cycles to be
extended.

For example, major interoperability problems exist in
governmental and business IT infrastructures and they are
actively seeking effective cross-domain solutions. A major
consideration for all sectors is balancing the need for access
or transfer between two or more differing domains with the
need for security and privacy. Furthermore, for military,
civilian government, and health care sectors, the freedom to
use critical applications and have them work together is vital
to their missions. Military, civilian government and health
care information technology infrastructures need next-gen-
eration architecture for interoperability to ensure security
and privacy practices. They have costly mission-critical
applications that have planned obsolescence. Vendor lock-in
is a huge disadvantage especially for these sectors that are
vital for public health and national security. These sectors
are particularly vulnerable because of their specialized needs
and disparate systems. Fiscal constraints can be a major
impediment for adoption of new technology that can also
limit leverage with vendors. Therefore, an approach that
steers away from being dependent on vendors is needed to
really address the communication barrier between disparate
domains/systems. The TC2A* provides an architecture

US 9,483,330 B2

5

enabling communication between various applications from
different vendors and running on different hardware plat-
forms.

TC?A? provides a level of control that is user-centric
rather than vendor-centric. This circumvents the controls
maintained by vendors on current architectures. A unique
aspect of this approach is the concept of a “Shared Sand-
box.” A sandbox is a virtual container in which untrusted
programs can be safely run. TC?A? expands the concept of
a virtual container to a Shared Sandbox, in which sharing
and communication among different applications can occur
once trust has been established. Data, functions and business
intelligence are normalized or translated in the Shared
Sandbox so that different applications can exchange infor-
mation in a controlled, secure environment.

TC?A? captures the best features of each application for
the user experience without modification of the original
applications, referred to as native applications or just appli-
cations. Data can be exchanged and disseminated through-
out applications in this architecture. Access to legacy sys-
tems can be maintained which extends the life cycle of
software. In addition, users can share data and communicate
on a continual basis effectively and securely between appli-
cations, with other users, and across multiple domains.
Current architectures like SOA can be “encapsulated” within
this architecture to allow applications in different domains to
interact in a secure environment with permissions set by
users. This architecture offers interoperability, economical
and accessible computing.

TERMS AND DEFINITIONS

Below is a list of terms and corresponding definitions.
Many of these terms describe components of the TC*A>. The
components may be modules comprised of software. Note
that these definitions are an aid to the understanding of the
terms, and the terms and claims are not necessarily limited
to these definitions.

Application Data Module—normalizes (encapsulates)
data from each native application for the data to be used by
modules controlled by the Universal Controller. In turn, data
coming from the Universal Data Module can be translated
back into the form recognized by the native application.

Application Logic—translates application functions such
as “open file”, “close file”, “minimize window”, “maximize
window”, “save file” and “save file as”, etc. between its
respective native application and the Universal Controller.
Thus, the particular set of application logic commands
within a particular application is translated to a set of
universal commands used by the modules controlled by the
Universal Controller. In turn, commands coming from the
Universal Data Module can be translated back into the form
recognized by the native application. This facilitates com-
munication back and forth between the Universal Controller
and the native application.

Application Logic Controller—the module with a univer-
sal set of logic that controls application functions such as
“open file”, “close file”, “minimize window”, “maximize
window”, “save file” and “save file as”, etc. The controller
allows the Universal Controller to manage application logic
functions across all application(s).

Business Intelligence—translates concepts, methods, and
functions used to define business decisions between the
Universal Controller and native applications. Thus, the
particular set of concepts, methods and functions used to
define business decisions within a particular application is
translated to a universal set of commands used by the

15

25

30

40

45

55

6

Universal Controller. In turn, business intelligence coming
from the Universal Data Module can be translated back into
the form recognized by the native application. This facili-
tates communication back and forth between the Universal
Controller and the native application.

Business Intelligence Controller—contains a universal set
of concepts, methods, and functions and allows the Univer-
sal Controller to manage business decisions across all appli-
cation(s).

Connection Pool—acts to facilitate communication
between all modules within the TC*A?, and between the
TC?A? and the native applications. Any way of transmitting
data could be used including but not limited to connections
utilizing TCP, UDP, IP, PPP and HTTP. In the embodiment
of FIG. 3, the connection pool 300 is configured so that all
the modules described in FIG. 3 communicate and commu-
nication can be accomplished through a variety of methods.
In this, a programmer may define the connection pool 300.
For example, the programmer may program TCZA? 100 to
operate using one big connection pool, many small connec-
tion pools, a few medium sized connection pools, or any
combination thereof.

Identity Management—module that centrally manages
the user’s authentication credentials for all applications and
domains; any authentication procedures could be used.

Native Application—an application running in its original
architectural environment outside of the Shared Sandbox.

Normalized Application Container—that controls mod-
ules that normalize Business Intelligence, Application
Logic, and Application Data for each application. Thus, the
Normalized Application Container “translates” between a
native application and the Universal Controller.

Permissions Management—interacts with the Identity
Management to grant another user access to a single infor-
mation event in a user’s domain. In particular, it encrypts
and encapsulates a user’s authentication credentials for a
particular application domain for a single information event.
This module creates a trusted computing base that facilitates
cross-domain sharing while maintaining strict security pro-
tocols, and rules of trust.

Shared Sandbox—includes the Universal Interface, Uni-
versal Controller, Universal Data Module, Connection Pool,
and all Normalized Application Containers and all modules
controlled by the Universal Controller and Normalized
Application Container(s).

Synchronization—module that when executed, clears
temporary data storage and synchronizes data in all appli-
cations and commits all relationships to the Universal Data
Module. Synchronization ensures data integrity, and a posi-
tive data redundancy across all applications.

User intelligence—controls business intelligence and
application logic that is user-defined and functions to create
business logic and rules that apply across all desired appli-
cations.

Universal Controller—manages the different native appli-
cations through the Normalized Applications Container(s).
Controls a set of modules that control business intelligence,
user intelligence, application logic, identity management,
permission management and synchronization.

Universal Data Module—creates and maintains relation-
ships for all applications, stores data for all modules in this
architecture and contains temporary data (scratch data 402)
of any kind for all applications using a temporary data
placeholder while the data are being used and waiting for
synchronization. After synchronization temporary relation-
ship data becomes permanently stored in the universal data
set. The Universal Data Module may use any data structure

US 9,483,330 B2

7

including but not limited to linked lists, arrays, queues,
stacks, trees, and any databases such as MySQL, SQL
Server, Access, Oracle, and any file structures such as xml
or csv.

Universal Interface—Single user interface for all TC?A?
applications in the shared sandbox.

System Diagrams of TC*A? and Components of the TCZA>

The components of the TC?A? are described by their
attributes and functions and can reside anywhere. These
functionalities and attributes can be accomplished in modu-
lar or non-modular approaches but for ease of presentation,
the figures described below represent the functionalities and
attributes as relationships among modules. Therefore, the
modules represented within the Universal Controller and the
Normalized Application Containers can reside anywhere. In
the following descriptions and examples, various modules of
the TC2A? are named for clarity of presentation but are not
limited to the meaning of these names. Therefore, the
iterations of this invention include but are not limited to the
representations in the following figures.

FIG. 1 illustrates a diagram of an TC*A? 100, according
to an embodiment of the invention. The TCZA* 100
described in the embodiment of FIG. 1 may include addi-
tional components, modules, and/or elements and some of
the components, modules and elements described herein
may be removed and/or modified without departing from the
functionality of the TCZA? 100.

The TC?A? 100 includes a universal interface 102, a
universal controller 104, a universal data module 106,
connection pool 108, and normalized application containers
(NAC) 1 through N where N is an positive integer corre-
sponding to the application numbers, application 1 through
N.

Once a native Application, such as any of Applications 1
to N, is initialized into the architecture, it is considered
connected to the TC*A? 100 until it is removed. The original
native application is not modified by this architecture.

The Universal Interface 102 provides a user interface for
the TC?A*. An example of a screen shot of the interface is
shown in FIG. 11. The Universal Interface 102 can display
any data called from any application connected to the
TC?A?. Input at the Universal Interface can be used to
create, modify, and manipulate data in any application
connected to the TC?A>. The User Interface 102 connects
with the Universal Controller 104. Each application 1 to N
has its own NAC. The NAC communicates with the Uni-
versal Controller 104 as well as its native application. The
Universal Interface 102, Universal Controller 104, Univer-
sal Data Module 106, Connection Pool 108, and all the
NAC:s are part of the Shared Sandbox. Data, functions and
business intelligence are normalized or translated by the
modules controlled by the respective NACs so that different
applications can exchange information in a controlled,
secure environment. The Universal Data Module 106 is
further described in FIG. 4.

FIG. 2 shows more detail of the Universal Controller 104
and the NACs. The Universal Controller 104 controls an
application logic controller module 202, a business intelli-
gence controller module 204, a user intelligence module
206, an identity management module 208, a permission
management module 210 and a synchronization module
212. Each NAC controls its respective application logic
module 214, business intelligence module 216, and appli-
cation data module 218. The Connection Pool 106, (more
detailed shown in FIG. 3) enables communication among all
modules within the TC2A2, and between the TC?A? and the
native applications.

20

40

45

55

8

The application logic 214 and the business intelligence
216 translate application functions and business intelligence
back and forth between the respective native application and
the Universal Controller 104. The application data module
218 encapsulates data from the native application to be used
by Universal Controller 104 and, in turn, data coming from
the Universal Data Module 106 can be translated back into
the form recognized by the native application.

The Synchronization Module 212 controls the synchro-
nization of the datasets among the applications connected to
the TC*A2. Synchronization is first triggered by an applica-
tion initialization (the first time run of the application) of any
application. After initialization, a triggering event could be
user-defined, for example, addition of new data, execution of
a certain application function, or addition of a new appli-
cation to the TC2A? 100, or default settings could be a
trigger linked to a certain event or based on time. For
example, when any change is saved in the Universal Inter-
face 102, that change would be temporarily stored in the
Universal Data Module 106 until synchronization is trig-
gered to propagate the change to the desired applications
initialized in the TC?A? 100. Propagating the change
includes denormalizing application data or other informa-
tion in the application data set that has been changed to the
respective application data set for any target applications
that are to receive the changed data.

The Permissions Management module 210 allows for
sharing of information between applications, different users
and across multiple domains. Using TCZA?, one user of a
CRM application can give permission to another user to
access contact and all related records. Without using TC2A?,
individual native applications may not freely communicate
and share data with each other outside the Shared Sandbox.

The Identity Management module 208 centrally manages
the user’s authentication credentials for all applications and
domains. This provides an added layer of security through
user authentication.

The User Intelligence 206 is a set of intelligence rules that
can be customized to a user’s chosen workflow. For
example, a user may want the event of adding a record to
their CRM application to trigger the record to be automati-
cally sent to another user, along with an email to inform
them of the addition. Therefore, a rule would be created for
this trigger and would be carried out through application
logic and/or business intelligence.

The Application Logic Controller 202 is a module that
controls all the Application Logic 214 modules in the
TC?A?. The Application Logic 214 modules translate appli-
cations functions, such as opening and closing files, mini-
mize/maximize window, save file, etc. The Business Intel-
ligence Controller 204 controls all the Business Intelligence
216 modules in the TC>A®. Business Intelligence 216 trans-
lates concepts, methods, and functions used to define busi-
ness decisions between the Universal Controller 104 and
native applications. Thus, the particular set of concepts,
methods and functions used to define business decisions
within a particular application is translated to a universal set
of commands used by the Universal Controller 104. This
facilitates communication back and forth between the Uni-
versal Controller 104 and the applications.

FIG. 3 illustrates a connection pool 108 including the
application connectors 300. FIG. 3 shows an example of
data transport layers and application layers in an application
connector. These layers facilitate communication between
the applications and the TC*A* 100 and among all modules
within the TC*A* 100.

US 9,483,330 B2

9

FIG. 4 illustrates the Universal Data Module 106. The
Universal Data Module 106 1) creates and maintains rela-
tionships for all applications and 2) stores data for all
modules in the TC?A* and 3) contains temporary data
(scratch data 402) of any kind for all applications using a
temporary data placeholder while the data are being used
and waiting for synchronization. The scratch data 402, for
example, is used when synchronizing between applications.
For example, CRM data from application 1 is received from
NAC 1 and is converted to the universal data set and stored
as scratch data until it can be synchronized with other
applications.

Note that in the example described above, CRM data from
an application container is converted to a universal data set.
This is a data format used by the TC*A? 100. All data from
the NACs to be exchanged with other NACs is converted to
the universal data set. Converting data from a format under-
stood by the application (i.e., the application data set which
is in the NAC for the application) to the universal data set
is referred to as normalizing the data set. Then, the NACs,
Universal Data module and universal controller convert data
from the universal data set to a format understood by each
application to receive the data, which is provided in the
corresponding NAC. This is referred to denormalizing.
Normalizing and denormalizing may be performed using
any data structure including but not limited to linked lists,
arrays, queues, stacks, trees, and any databases such as
MySQL, SQL Server, Access, Oracle, and any file structures
such as xml or csv. The universal data set is unique to the
TC?A? and allows data to be freely exchanged between
applications. Also, synchronization and data exchange using
the universal data set may be controlled by a combination of
user and/or business intelligence and permissions.

FIG. 5 shows the TC?A? 100 implemented in a local
computer system 500, such as a PC, laptop, cell phone, PDA
or other end user device. The local computer system 500 in
the embodiment of FIG. 5 includes the universal interface
module 102, the universal controller module 104, the uni-
versal data module 106, a connection pool 108, a normalized
application container module 502-A, a normalized applica-
tion container module 502-B, a normalized application
container module 502-N, a FileMaker Pro application 504-
A, an e-mail client 504-B, and a local .net application 504-N.
Other NACs and applications may be included.

The Universal Interface 102 provides a user interface for
all the applications initialized with the TC*A? 100 on the
local computer system 500. The TC*A® may exhibit quali-
ties, attributes and features of all of the applications that
have been initialized into the TC>A® environment. For
example, a user would be able to share data within an email
client with the local FileMaker Pro customer relationship
management (CRM) application, and .Net Enterprise Project
Management (PM) applications. In addition, the user is able
to share contact information from their address book directly
with the PM and CRM applications without reentering the
information into either application.

FIG. 6 illustrates that the TC?A® can be used for data
exchange among applications running on different computer
systems and in different domains. For example, applications
616, 618, 620 and 622 may be running on one or more
mobile devices, local computer, etc. TC?A? allows data
exchange over various networks and with enterprise appli-
cations running inside a firewall. For example, a user
receives an instant message that informs them that they have
been assigned a new task concerning another user’s client.
Using their mobile device to connect through their carrier
network, the mobile user is able to login to their corporate

20

25

40

45

55

10

virtual private network (VPN) account and have access to
the assigned client’s information in the Legacy Customer
Data Base CRM application 604. In addition, at the same
time, they are able to log into the ERP application 602 to
access their assigned task. If TC?A? was not used, the
information would remain in an isolated location and the
other user would not be able to access or safely share this
data. The user would need to follow what, if any, data
sharing procedures where outlined by the application in
order to gain access. In many cases these steps are cumber-
some, introduce the potential for duplicate or incorrect data
opportunities, and may have security implementation issues.
This potential can grow exponentially especially if large
data sets are involved. Thus, TC2A? allows automatic data
processing among applications in different architectures to
assure data integrity, and produce a positive data redundancy
all within a trusted computing base.

In TC*A?, a single access event will grant access to all
information needed to complete the task assigned to the user.
Once the task is completed, the user would send a comple-
tion notification using an instant message. Using a single
access event, the user allows the task manager to access
information in their project management Project Manage-
ment SaaS application 622 and information in the CRM 604
that has been updated. Furthermore, the Synchronization in
this event would also update information for the assignee
and original owner in his’her CRM application.

Therefore, these different applications would be able to
share and exchange updated data continually. We have
crossed domains with various applications in different archi-
tectures and shared data between users through multiple
transmittal agents.

FIG. 7 illustrates the TC?A? as a distributed portal appli-
cation. The TC?A? application is a portal application that has
the ability to interface with multiple types of applications.
Essentially, the TC2A? portal application 700 may exhibit
qualities, attributes and features of all of the applications and
share data across all of these systems and domains within a
trusted computing base. For example, a portal application
could take on the role of a universal application for multiple
applications such as: Google’s g-mail or MSN’s Hotmail
702 email service, an internal .Net Enterprise Resource
Planning (ERP) 602, a project management application
offered as a Software as a Service 622, and a legacy
FileMaker Pro Pro customer database 604. This example
allows the user’s client to reside anywhere as long as they
have access to an Internet connection.

The properties of a TC*A® Universal Interface would
allow the user to access data from the legacy customer
database, and integrate data-types with newer applications
such as the SaaS Project Management application and the
new .Net ERP application as if they were a single applica-
tion. The Synchronization of all data fields between the
applications eliminates data integrity issues. Additionally,
the same data could be stored in multiple applications,
therefore creating a positive data redundancy (identical data
across multiple systems).

Methods

FIG. 8 illustrates a flow diagram of the method 800 for
configuring the TC*A? 100 for data exchange, according to
an embodiment. The method 800 described initialization of
applications with the TC?A? and registering user and busi-
ness intelligence.

At step 801, the TC>A* 100 identifies multiple applica-
tions that need to exchange data. The applications may be
identified by a user. At step 802, each application is initial-
ized by the TC?A?. Initializing the applications include

US 9,483,330 B2

11

creating a NAC and all modules controlled by the NAC for
each application. At step 803, the TC>A? receives and stores
user registration information for authenticating the user. At
step 804, each module translates (normalizes) the respective
application data set (may include application data, business
intelligence, and application logic) to the universal data set
(may include application data, business intelligence, and
application logic). At step 805, the TC*A? creates relation-
ships for the translated data set in the Universal Data
Module. This includes a mapping, for example, between
each field or components of the application data set and each
field or component of the universal data set. Creating the
relationships includes storing them in temporary storage
(Scratch Data shown in FIG. 4) in the Universal Data
Module. At step 806, synchronization is triggered as part of
the initialization, and clears the temporary storage, and the
applications are ready for use.

FIG. 9 illustrates a flow diagram of a method 900 for
using the TC?A? for data exchange among applications,
according to an embodiment of the invention.

At step 901, data is entered at the Universal Interface. At
step 902, the data is stored in temporary data set in the
Universal Data Module 106.

At step 903, applicable rules and relationships stored in
the Universal Data Module 106 are applied using controller
modules 202, 204, 206, 208, 210, and 212 controlled by the
Universal Controller 104. For example, the controller mod-
ules identify applicable 1) user-intelligence rules residing on
the user intelligence controller module 206, 2) application-
logic-rules residing on the application logic controller mod-
ule 202, 3) business-intelligence residing on the business
intelligence controller module 204, 4) identity-rules residing
on the identify management module 208, 5) permission-
rules residing on the permission management module 210
and 6) synchronization module 212.

At step 904, synchronization is triggered (by applicable
rules) and the temporary data is cleared. At step 905, data is
converted from a universal data set to each respective
application data set and at step 906, data is put into respec-
tive native applications.

For example, let both the FileMaker Pro application
504-A and the e-mail client-server application 504-B be in
the TC?A?. A contact is added through the Universal Inter-
face 102 as “Add New Contact”. Let a user intelligence rule
exist that all new contacts should be sent to both the
FileMaker Pro application and the email client-server appli-
cation. Thus, the new contact is propagated respectively to
both 504-A and 504-B.

A related example involves entering of a new user intel-
ligence rule into the Universal Interface where any new
contact should be propagated to a .NET PM application
504-N as well as 504-A and 504-B. Another related example
is a combination of user intelligence and permissions man-
agement rules which allows sharing of one user’s new
contact with one other identified user in any or all of 504-A,
504-B or 504-N. Another related example is a combination
of business intelligence, user intelligence, and application
logic rules which allow synchronization of existing appli-
cation data and results in a universal data set.

FIG. 10 illustrates a block diagram of a computer appa-
ratus 1000, configured, for example, to implement or
execute the methods 800 and/or 900 as described above. In
this, the computing apparatus 1000 may be used as a
platform for executing one or more of the functions
described hereinabove with respect to the TC?A? and/or
elements thereof described in the embodiments of FIGS. 1
through 7.

10

20

25

30

35

40

45

50

55

60

65

12

The computer apparatus 1000 includes a processor 1002
that may implement or executive some or all of the steps
described in the methods 800 and/or 900. Commands and
data from the processor 1002 are communicated over a
communication bus 1004. The computer apparatus 1000
also includes a main memory 1006, such as a random access
memory (RAM), where the program code for processor
1002 may be executed during runtime, and a secondary
memory 1008. The secondary memory 1008 includes, for
example, 1007 virtual memory, paging files or swap files,
one or more hard disk drives 1010 and/or removable storage
drive 1012, representing a floppy diskette drive, a magnetic
tape drive, a compact disk drive, etc., where a copy of the
program code for the methods 800 and 900 may be stored.

The removable storage drive 1010 reads from and/or
writes to a removable storage unit 1014 in a well-known
manner. User input and output devices may include a
keyboard 1016, a mouse 1018, and a display 1020. A display
adaptor 1022 may interface with the communication bus
1004 and the display 1020 and may receive display data
from the processor 1002 and convert the display data into
display commands for the display 1020. In addition, the
processor(s) 1002 may communicate over a network, for
instance, the Internet, LAN, etc., through a network adaptor
1024.

It will be apparent to one of ordinary skill in the art that
other known electronic components may be added or sub-
stituted in the computing apparatus 1000. In addition, the
computer apparatus 1000 may include a system board or
blade used in a rack in a head end, central office, neighbor-
hood node, a conventional “white box™ server or computing
device, etc. In addition, one or more of the components in
the embodiment of FIG. 10 may be optional (for instance,
user input devices, secondary memory, etc).

Example of User Interface Screenshot and Description of
Various Uses of TC?A”

The TC*A? can automate the flow of data between analy-
sis, design and simulation applications like spreadsheets,
task plans, risk management databases, requirements data-
bases, technical performance metrics and margins sheets, or
monthly status reports. TC2A? is scalable and user-select-
able. User and group permission and access controls are
easily controlled. This example is viable in any market
segment with the need to integrate business processes sup-
ported by disparate systems.

TC?A? can be used for automating the flow among many
types of applications. In one example, TC*A? can be used for
synchronizing social networking applications, such as
LINKEDIN, MYSPACE, FACEBOOK, etc. FIG. 11 shows
an example of a screenshot of the universal interface made
available by TC?A® The user can enter data into the
universal interface and the data is automatically propagated
to all the user’s social networking applications by TC2AZ.
TC?A* may be used as social networking tool for collabo-
ration among scientists working in different organization
around the world. Bioinformatics requires the integration of
heterogeneous data systems. This architecture would allow
them to share data and disparate computational resources,
and collaborate by visualizing data through a single user
interface.

In another example, the US Military operates closely with
foreign armies and local forces in various operations around
the world. Coordination with these groups would be
enhanced by this architecture enabling interoperability
between coalition command and control systems. Security
access and privacy rules would be clearly established. For
example, foreign users could be authorized to send free text

US 9,483,330 B2

13

or instant messages, but would not be authorized to access
tactical maps and plans. This example also includes mobile
communication devices such as cell phones and tactical
radios and could allow a common voice/data transport for
different branches of the military and coalition forces.

The ability to dynamically update data models in support
of enterprise application integration such as battle command
or civilian government databases, health care, and education
applications. This architecture represents a holistic approach
to dynamic updating of data stores in multiple applications
through one user interface customized to user preferences. A
single database cannot support the data needs of the military
or other enterprise-wide commercial services. This architec-
ture supports integration and interoperability with Commer-
cial-off-the-shelf (COTS)/Government-oft-the-shelf
(GOTS) technologies.

TC?A? enables the continual integration and dispersal of
new information into existing knowledge bases, including
heterogeneous data sets from large health-related databases,
such as patient data, population health data, or image
databases. This architecture would ensure security and pri-
vacy for health care related enterprises using disparate
systems. Ultimate end users of the developed technology
would include researchers at universities, medical/health
care and allied health providers, medical institutions per-
forming clinical trials, hospitals, urgent care or health care
centers, laboratories, radiology centers, health care admin-
istrators, or patients.

TC?A? enabled mobile devices used by emergency
responders such as police, firefighters, paramedics, disaster
relief, and chemical or biohazard response teams to share
communication and continuously update data. Mobile
devices could integrate disparate systems such as common
voice/data transport, vital statistics sensors, GPS data,
knowledge bases and other critical applications to create
continual situational awareness.

What has been described and illustrated herein are
embodiments of along with some of their variations. The
terms, descriptions and figures used herein are set forth by
way of illustration only and are not meant as limitations.
Those skilled in the art will recognize that many variations
are possible within the spirit and scope of the embodiments,
wherein the embodiments are intended to be defined by the
following claims—and their equivalents—in that all terms
are meant in their broadest reasonable sense unless other-
wise indicated.

What is claimed is:

1. A method performed by a computer system executing
software stored on a computer readable storage medium, the
method comprising:

receiving an application data set from a source applica-

tion;

normalizing the application data set to a universal data set,

wherein normalizing the application data set received
from the source application to a universal data set
further comprises normalizing application data, busi-
ness intelligence, and application logic for the source
application to the universal data set;

storing the universal data set, wherein the universal data

set is operable to be used and shared by one or more
other applications;

denormalizing the universal data set to a target application

data set;

transferring the target application data set to a target

application;

receiving information via an interface;

storing the information in the universal data set;

15

20

25

30

35

40

45

50

55

60

65

14

denormalizing the information to a data set for at least one
of the source application and the target application; and

transferring the denormalized information to at least one
of the source application and the target application.

2. The method of claim 1, further comprising:

denormalizing the universal data set to the application

data set of the source application; and

transferring the application data set of the source appli-

cation to the source application.

3. The method of claim 2, wherein the denormalizing
universal data set comprises including updates in the appli-
cation data set of the source application.

4. The method of claim 3, further comprising:

updating the universal data set prior to the denormalizing

of the universal data set to the application data set of the
source application.

5. The method of claim 1, further comprising:

initializing the source application and the target applica-

tion, wherein the initializing includes creating a nor-
malized application container (NAC) for each of the
source application and the target application, and each
NAC is used to normalize data from the corresponding
application.

6. The method of claim 5, comprising:

for each application, creating an application logic module,

a business intelligence module, and an application data
module, and the modules are operable to be used by the
NAC to normalize data from the corresponding appli-
cation.

7. The method of claim 1, wherein initializing further
comprises:

prior to creating the NACs for the source application and

the target application, registering users for the source
application and the target application, wherein the
registering includes storing user authentication infor-
mation and access permissions for the source applica-
tion and the target application.

8. The method of claim 7, wherein the registering creates
a trusted computer base that allows the NACs to exchange
data.

9. The method of claim 8, further comprising:

temporarily providing access between the source appli-

cation and the target application through the trusted
computer base for a single event.

10. The method of claim 1, further comprising:

creating and storing relationships between the application

data, business intelligence, and application logic of the
source application and application data, business intel-
ligence, and application logic of the universal data set.

11. The method of claim 1, further comprising:

storing user intelligence or business intelligence that

identifies events for triggering the normalizing and
denormalizing.

12. The method of claim 1, further comprising:

updating, modifying, and manipulating data for a plurality

of applications using a single user interface.

13. The method of claim 1, further comprising:

storing the universal data set; and

removing the universal data set from the temporary stor-

age after the denormalizing from the stored normalized
universal data set to the target application data set.

14. A computer system including a processor to exchange
data between applications, the computer system comprising:

a universal interface receiving user information used to

exchange data between applications;

US 9,483,330 B2

15

a universal data module comprising machine readable
instructions executed by the processor, the universal
data module storing relationships for the applications to
a universal data set;
a normalized application container (NAC) for each appli-
cation, each NAC translates data to the universal data
set from an application data set for an associated
application and translates data from the universal data
set to an application data set for one or more of the
applications, wherein the translating is performed using
the universal data module; and
a universal controller comprising machine readable
instructions executed by the processor, the controller
controlling the translation of data based on one or more
rules;

receiving information via an interface;

storing the information in the universal data set;

denormalizing the information to a data set for at least
one of a source application and a target application,
wherein denormalizing the information comprises
denormalizing application data, business intelli-
gence, and application logic in the universal data set
for at least one of the source application and the
target application; and

transferring the denormalized information to at least
one of the source application and the target applica-
tion.

10

15

20

25

16

15. The system of claim 14, wherein the universal con-
troller is configured to control translation of an application
data set for the source application to the target application.

16. The system of claim 14, wherein the universal con-
troller is configured to control translation of updates, modi-
fications, and manipulations made to the universal data set
to the application data set of one or more of the applications.

17. The system of claim 14, wherein user intelligence
identifies events for automatically triggering the translating
of one or more of the applications.

18. The system of claim 14, wherein business intelligence
identifies business rules for translating between one or more
of the applications.

19. A non-transitory computer readable medium storing
machine readable instructions executed by a processor to:

control translation of data based on one or more rules;

receive information via an interface;

store the information in a universal data set;

denormalize the information to a data set for at least one

of a source application and a target application, wherein
to denormalize the information, the processor is to
denormalize application data, business intelligence,
and application logic in the universal data set for at
least one of the source application and the target
application; and

transfer the denormalized information to at least one of

the source application and the target application.

#* #* #* #* #*

